On special differential subordinations using Sălăgean and Ruscheweyh operators
نویسندگان
چکیده
منابع مشابه
On special differential superordinations using a generalized Sălăgean operator and Ruscheweyh derivative
ALINA ALB LUPAS¸Abstract. In the present paper we establish several differential superordinations regarding the new operator RD m λ,α defined by using the generalized S˘ al˘ agean operator D m λ f (z) and Ruscheweyh derivative R m f ∞ j=n+1 a j z j , z ∈ U }. A number of interesting consequences of some of these superordination results are discussed. Relevant connections of some of the new resu...
متن کاملA Note on Special Strong Differential Subordinations Using a New Multiplier Transformation and Ruscheweyh Derivative
In this paper we establish several strong differential subordinations regarding an extended new operator obtained as a linear combination of an extended Ruscheweyh derivative and an extended new multiplier transformation. A number of interesting consequences of these strong subordination results are discussed.
متن کاملA Note on Strong Differential Subordinations Using a Generalized Sălăgean Operator and Ruscheweyh Operator
In the present paper we establish several strong differential subordinations regardind the extended new operator DRm λ defined by the Hadamard product of the extended generalized Sălăgean operator Dm λ and the extended Ruscheweyh derivative Rm, given by DRm λ : Anζ → Anζ , DRm λ f (z, ζ) = (Dm λ ∗Rm) f (z, ζ) , where Anζ = {f ∈ H(U × U), f(z, ζ) = z + an+1 (ζ) zn+1 + . . . , z ∈ U, ζ ∈ U} is th...
متن کاملSome Strong Differential Subordinations Using a New Generalized Multiplier Transformation
The object of this paper is to obtain some strong subordination results regarding a new class Sm n (α, β, ρ) defined by using a new generalized multiplier transformation. 2000 Mathematics Subject Classification: 30C80, 30C45, 30A20.
متن کاملDifferential Subordinations for Fractional- Linear Transformations
We establish that the differential subordinations of the forms p(z)+γzp′(z)≺ h(A1,B1;z) or p(z)+γzp′(z)/p(z) ≺ h(A2,B2;z) implies p(z) ≺ h(A,B;z), where γ ≥ 0 and h(A,B;z)= (1+Az)/(1+Bz) with −1≤ B <A.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2009
ISSN: 1331-4343
DOI: 10.7153/mia-12-61